关键词:
电力电子化电力系统
动态负荷模型
参数辨识
灵敏度分析
粒子群算法
摘要:
电力系统负荷建模是电力系统分析、规划、控制以及运行和监视领域中广泛研究的关键性技术,能够准确反映负荷外部特性对于电力系统仿真和安全稳定运行非常重要。过去,经过国内外对电力负荷建模的大量研究,已经有非常丰富的负荷模型结构,并且也有大规模投入使用的经典模型。但是,近年来可再生能源发电、高压直流输电和电气化负荷使用规模不断扩大,电力系统正在发生广泛而深刻的变化,呈现出多时间尺度动力学特性。国内外都陆续出现了不明机理带来的系统稳定性和安全性问题,这已经对系统运行构成了严重威胁。目前的电力负荷模型在一定程度上不能良好地描述负荷外部特性,面对电力系统电力电子化新形势下的艰巨挑战,在此基础上,本文重点研究在中尺度扰动下,电力电子化电力系统动态负荷的等效机理模型。论文的主要研究内容有如下几个方面:1、建立正确的电力电子化动态负荷数学模型。考虑电力电子装置及其控制系统,将其整体作为电力电子接口串入传统动态负荷模型中,从而得出电力电子化动态负荷等效机理模型。经过大量分析确定该模型的拓扑结构,解决方程的强耦合性、非线性的问题,并在忽略一定的损耗下消除中间变量,整合出以电压、频率为输入,有功、无功功率为输出的传递函数形式的动态模型,在仿真平台中搭建该模型和拓扑对应的物理模型,分别进行三次扰动设置,比较两者输出的动态响应,验证了建立的动态模型具有正确性。2、对建立的模型参数进行灵敏度分析。在考虑负荷电力电子化后,所建立的模型参数也随之增加,这不但给参数辨识带来了不便,在实用性方面也提高了复杂度。基于此,采用轨迹灵敏度理论和控制变量法,依次对模型中的每一个参数进行分析,并根据结果和实际情况确定了待辨识参数,这大大降低了模型的复杂度,为下一步研究奠定了基础。3、基于粒子群算法对重点参数进行辨识。首先通过实验获取数据并将数据进行预处理,将灵敏度低的参数使用经典值计算得出,再采用粒子群算法辨识出灵敏度较高的参数,将实验曲线与辨识曲线进行拟合,结果表明两者的拟合程度较高,再一次证明了本文所建立的模型的有效性,同时具有一定的实用性。