关键词:
医学影像处理
图像分割
图像分类
深度学习
神经网络
摘要:
为缓解我国医疗资源长期短缺的社会矛盾,满足人民日益增长的医疗需求,基于深度学习的医学图像辅助诊断研究已成为智慧医疗中的重点发展领域。为更好地解决医学影像中多模态成像、多时间点采集、病灶空间异质性等难点,本文以深度学习技术为核心,以解决临床问题为导向,以设计全自动辅助诊断算法为目标,深入开展了多项医学影像中分割与分类模型的研究与应用,研究详情如下:本文首先提出了一个基于深度学习的肝癌消融术疗效评估全自动框架,该框架以多期CT影像中肝脏、肝癌肿瘤和消融区的自动三维分割模块为核心,还包括消融治疗的自动配准模块和消融手术治疗效果自动评估模块。在独立测试集上,该方法对多期CT影像中的肝脏分割Dice系数均可达95%,对术前静脉期CT影像中肿瘤分割的Dice系数为72.27%,对术后静脉期消融区域分割的Dice系数为89.06%。结果表明,该框架有望用于肝癌患者消融手术的全自动临床评估。随后,本文提出了一个适用于不同深度学习分割模型的自动后处理模块。在生成对抗网络(GAN)的基础上,提出标签分配生成对抗网络(LAGAN),以完成传统深度分割模型概率图的标签分配。随后,应用LAGAN完成CT影像中的结直肠癌肿瘤分割,并探讨其与不同深度学习网络相组合时的性能表现。LAGAN将FCN-32s对CT影像中结直肠癌肿瘤分割的Dice系数从81.83%提升至90.82%,将U-net分割的Dice系数从86.67%提升至到91.54%。结果表明,LAGAN是一种灵活且稳定的后处理模块,并可与不同深度分割网络自由组合,并实现CT影像中结直肠癌肿瘤的分割任务。为解决深度学习网络在分类任务中可解释性差的问题,本文最后提出了一种可解释性引导的集成卷积神经网络(CNN),以完成扩散张量成像(DTI)中脑胶质瘤真假复发自动分类。首先,构建三个典型的单分类模型。随后,利用上述网络所有卷积层中的特定类别梯度信息来突出DTI扫描中的病灶相关区域。影像医生在其中选择出与分类问题高度相关的卷积层。最后,利用所选层的抽象特征构建多尺度集成CNN。该集成网络对脑胶质瘤真假复发的分类准确率达到90.20%,对各单分类网络提升特异度均在20%以上。结果表明,该网络能够提升单分类CNN的模型可靠性和分类准确性。综上所述,本文针对不同的应用场景与医学影像数据类型,特异性地改进了现有的深度学习分割与分类模型。本文提出的研究思路及框架具有较强的通用性,对未来更多的深度学习医学影像辅助诊断建模具有积极的参考意义。