关键词:
computer-aided diagnosis
classifier design
linear classifier
quadratic classifier
neural network
sample size
feature space dimensionality
ROC analysis
摘要:
Classifier design is one of the key steps in the development of computer-aided diagnosis (CAD) algorithms. A classifier is designed with case samples drawn from the patient population. Generally, the sample size available for classifier design is limited, which introduces variance and bias into the performance of the trained classifier, relative to that obtained with an infinite sample size. For CAD applications, a commonly used performance index for a classifier is the area, A(z), under the receiver operating characteristic (ROC) curve. We have conducted a computer simulation study to investigate the dependence of the mean performance, in terms of A(z), on design sample size for a linear discriminant and two nonlinear classifiers, the quadratic discriminant and the backpropagation neural network (ANN). The performances of the classifiers were compared for four types of class distributions that have specific properties: multivariate normal distributions with equal covariance matrices and unequal means, unequal covariance matrices and unequal means, and unequal covariance matrices and equal means, and a feature space where the two classes were uniformly distributed in disjoint checkerboard regions. We evaluated the performances of the classifiers in feature spaces of dimensionality ranging from 3 to 15, and design sample sizes from 20 to 800 per class. The dependence of the resubstitution and hold-out performance on design (training) sample size (N-t) was investigated. For multivariate normal class distributions with equal covariance matrices, the linear discriminant is the optimal classifier. It was found that its A(z)-versus-1/N-t curves can be closely approximated by linear dependences over the range of sample sizes studied. In the feature spaces with unequal covariance matrices where the quadratic discriminant is optimal, the linear discriminant is inferior to the quadratic discriminant or the ANN when the design sample size is large. However, when the design sam