关键词:
Computer science
Artificial intelligence
摘要:
Automatic identification of speaker state is essential for spoken language understanding, with broad potential in various real-world applications. However, most existing work has focused on recognizing a limited set of emotional states using cues from a single modality. This thesis describes my research that addresses these limitations and challenges associated with speaker state identification by studying a wide range of speaker states, including emotion and sentiment, humor, and charisma, using features from speech, text, and visual modalities. The first part of this thesis focuses on emotion and sentiment recognition in speech. Emotion and sentiment recognition is one of the most studied topics in speaker state identification and has gained increasing attention in speech research recently, with extensive emotional speech models and datasets published every year. However, most work focuses only on recognizing a set of discrete emotions in high-resource languages such as English, while in real-life conversations, emotion is changing continuously and exists in all spoken languages. To address the mismatch, we propose a deep neural network model to recognize continuous emotion by combining inputs from raw waveform signals and spectrograms. Experimental results on two datasets show that the proposed model achieves state-of-the-art results by exploiting both waveforms and spectrograms as *** to the higher number of existing textual sentiment models than speech models in low-resource languages, we also propose a method to bootstrap sentiment labels from text transcripts and use these labels to train a sentiment classifier in speech. Utilizing the speaker state information shared across modalities, we extend speech sentiment recognition from high-resource languages to low-resource languages. Moreover, using the natural verse-level alignment in the audio Bibles across different languages, we also explore cross-lingual and cross-modality sentiment transfer. In the se