关键词:
Engineering
Artificial intelligence
Computer science
摘要:
Modern networking and computing systems have become very complicated and highly dynamic, which makes them hard to model, predict and control. In this thesis, we aim to study system control problems from a whole new perspective by leveraging emerging Deep Reinforcement Learning (DRL), to develop experience-driven model-free approaches, which enable a network or a device to learn the best way to control itself from its own experience (e.g., runtime statistics data) rather than from accurate mathematical models, just as a human learns a new skill (e.g., driving, swimming, etc). To demonstrate the feasibility and superiority of this experience-driven control design philosophy, we present the design, implementation, and evaluation of multiple DRL-based control frameworks on two fundamental networking problems, Traffic Engineering (TE) and Multi-Path TCP (MPTCP) congestion control, as well as one cutting-edge application, resource co-scheduling for Deep Neural Network (DNN) models on mobile and edge devices with heterogeneous hardware. We first propose DRL-TE, a DRL-based framework that enables experience-driven networking for TE. DRL-TE maximizes a widely-used utility function by jointly learning network environment and its dynamics, and making decisions under the guidance of powerful DNNs. We propose two new techniques, TE-aware exploration and actor-critic-based prioritized experience replay, to optimize the general DRL framework particularly for TE. Furthermore, we propose an Actor-Critic-based Transfer learning framework for TE, ACT-TE, which solves a practical problem in experience-driven networking: when network configurations are changed, how to train a new DRL agent to effectively and quickly adapt to the new environment. In the new network environment, ACT-TE leverages policy distillation to rapidly learn a new control policy from both old knowledge (i.e., distilled from the existing agent) and new experience (i.e., newly collected samples). In addition, we prop