关键词:
Software
Manufacturing
Success
Optimization
Robots
Linear programming
Algorithms
Traveling salesman problem
Cities
Computer aided engineering--CAE
Engineers
Robotics
Computer science
Design
Industrial engineering
Operations research
摘要:
In industry, short ramp-up times, product quality, product customization and high production rates are among the main drivers of technological progress. This is especially true for automotive manufacturers whose market is very competitive, constantly pushing for new solutions. In this industry, many of the processes are carried out by robots: for example, operations such as stud/spot welding, sealing, painting and inspection. Besides higher production rates, the improvement of these processes is important from a sustainability perspective, since an optimized equipment utilization may be achieved, in terms of resources used, including such things as robots, energy, and physical prototyping. The achievements of such goals may, nowadays, be reached also thanks to virtual methods, which make modeling, simulation and optimization of industrial processes possible. The work in this thesis may be positioned in this area and focuses on virtual product and production development for throughput improvement of robotics processes in the automotive industry. Specifically, the thesis presents methods, algorithms and tools to avoid collisions and minimize cycle time in multi-robot stations. It starts with an overview of the problem, providing insights into the relationship between the volumes shared by the robots' workspaces and more abstract modeling spaces. It then describes a computational method for minimizing cycle time when robot paths are geometrically fixed and only velocity tuning is allowed to avoid collisions. Additional requirements are considered for running these solutions in industrial setups, specifically the time delays introduced when stopping robots to exchange information with a programmable logic controller (PLC). A post-processing step is suggested, with algorithms taking into account these practical constraints. When no communication at all with the PLC is highly desirable, a method of providing such programs is described to give completely separated robot wo