摘要:
Abstract 2850
Background:Upon encountering cognate antigen, naïve B cells may undergo germinal center reaction. This results in DNA modification including somatic hypermutations (HSM) of the immunoglobulin heavy chain variable region gene (IGHV) and immunoglobulin class switch recombination (CSR). HSM and CSR are unlinked, but share initiating and mechanistic factors. Prior evidence indicates CLL B cells are antigen experienced; however, half of all CLL patients have an unmutated IGHV and follow more aggressive clinical courses. The biologic importance of the CLL immunoglobulin isotype and CSR in B cell receptor (BCR)-mediated signaling is not well understood. We hypothesized the immunoglobulin isotype and expression density of surface immunoglobulin would correlate with IGHV mutation status and other clinical parameters, and predict BCR responsiveness in vitro.
Methods:195 samples from our CLL specimen repository with detailed clinical and biologic characterization were evaluated. Surface expression of IgD, IgM and IgG was determined using multi-parameter flow cytometry and samples were classified as either IgG+ or IgM+IgD+ co-expressing. An ROC analysis was performed to identify the most discriminate value for dichotomization of IgM surface expression as a function of IGHV mutation status. IgMhiIgD+, and IgMlowIgD+ patients were then analyzed for associations with clinical and biologic parameters. To investigate the biological mechanisms of potential associations, BCR-mediated signaling after isotype specific crosslinking in vitro was measured by quantification of downstream phospho-proteins (SYK, AKT, ERK, MEK1, NFκB) by flow cytometry (phospho-flow). Samples were crosslinked with IgM (or IgG if IgG+), IgD, and isotype control and incubated for 0, 15, 30, 60, and 120 minutes. The extent of phosphorylation at each timepoint was expressed as mean fluorointensity (MFI) of the examined proteins. Crosslinked samples were also analyzed using oligonucleotide microar