摘要:
Purpose: With brighter stimuli, the photopic ERG b-wave increases to a maximal value and then decreases to a plateau, a feature known as the Photopic Hill (PH). Recently, a mathematical model combining a Gaussian (GF) and a Logistic Growth (LGF) functions was developed to fit the PH (Hamilton et al., Vision Research, in press). We examined if this equation could help us sort out selected retinopathies. Methods: We compared PHs (background: 30 cd.m-2; intensities: -0.8 to 2.84 log ***.m-2) obtained from normals (N=40) and patients (N=20) affected with Congenital Stationary Night Blindness (CSNB), Congenital Postreceptoral Cone Pathway Anomaly (CPCPA) and Retinitis Pigmentosa (RP) with the GL ratio [GL= Gb / (Gb+Vbmax)] were Gb and Vbmax represent the amplitude of the Gaussian and logistic (Vbmax) functions respectively. Results: The normal GL ratio is 0.60 ± 0.08 (mean ± 1SD) compared to ≈1.0 in CSNB (almost pure GF) and 0.32±0.08 in CPCP [reduced GF (p<.05) and normal LF (p>.05)] patients. Six of the 8 RP patients had a GL ratio above 0.5 (mean GL= 0.70 ± 0.19) and 2 below (0.28 and 0.41). Of interest, while in some retinopathies, a decline in Gb and Vbmax occurred with disease progression (longitudinal and transversal comparisons), it did not always modify the GL ratio. Conclusions: Human PH can be dissected into two distinct and concomitant phenomena each represented by its own equation. Altghough the retinal origin of the GF and LGF awaits to be confirmed, use of this mathematical approach appears to add valuable information that will further refine the diagnosis of retinal disorders affecting the photopic (cone) pathway. Supported by CIHR and Réseau Vision.