限定内容
主题
- 909 篇 机器学习
- 520 篇 machine learning
- 257 篇 机器学习方法
- 160 篇 支持向量机
- 117 篇 随机森林
- 82 篇 神经网络
- 64 篇 深度学习
- 57 篇 random forest
- 48 篇 数据挖掘
- 47 篇 support vector m...
- 46 篇 人工智能
- 44 篇 classification
- 42 篇 artificial intel...
- 40 篇 预测模型
- 36 篇 xgboost
- 36 篇 预测
- 35 篇 artificial neura...
- 33 篇 特征选择
- 33 篇 deep learning
- 33 篇 特征提取
机构
- 56 篇 中国科学院大学
- 33 篇 吉林大学
- 29 篇 电子科技大学
- 26 篇 浙江大学
- 25 篇 哈尔滨工业大学
- 24 篇 南京大学
- 23 篇 北京大学
- 22 篇 华中科技大学
- 22 篇 清华大学
- 21 篇 兰州大学
- 20 篇 上海交通大学
- 20 篇 厦门大学
- 20 篇 中国科学技术大学
- 19 篇 中国地质大学
- 19 篇 山东大学
- 19 篇 重庆大学
- 19 篇 中国石油大学
- 18 篇 大连理工大学
- 17 篇 上海财经大学
- 17 篇 四川大学
专题定制
- Fiber recognition with machine learning methods by fiber tensile fracture via acoustic emission method
- Shanghai Univ Engn Sci Sch Fash Engn Shanghai Peoples R ChinaQuartermaster Res Inst Engn & Technol Beijing Peoples R ChinaShanghai Synthet Fibers Res Inst Shanghai Peoples R ChinaShandong Hongye Text Co Ltd Jinan Peoples R China
- 来源 详细信息
- Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images
- Univ Balearic Isl SCOPIA Res Grp Dept Math & Comp Sci Crta ValldemossaKm 7 E-07122 Palma De Mallorca SpainHlth Res Inst Balearic Isl IdISBa E-07010 Palma De Mallorca SpainUniv Balearic Isl UGiVIA Res Grp Dept Math & Comp Sci Crta ValldemossaKm 7-5 E-07122 Palma De Mallorca Spain
- 来源 详细信息
- Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin
- Int Ctr Trop Agr CIAT Cali 6713 ColombiaTexas A&M Univ Dept Soil & Crop Sci College Stn TX 77843 USABiovers Int Bukavu South Kivu Rep CongoVITO Remote Sensing Mol BelgiumBiovers Int POB 24384 Kampala UgandaIITA Abomey Calavi Biovers Int 08 BP 0932 Cotonou BeninILRI Biovers Int POB 5689 Addis Ababa Ethiopia
-
来源
ScienceDirect Journa...
详细信息
- Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier
- Fed Univ Vicosa UFV Dept Agr Engn Ave Peter Henry Rolfs S-N BR-36570900 Vicosa MG BrazilEmbrapa Cerrados Brazilian Agr Res Corp BR-020Km 18 BR-73310970 Planaltina DF Brazil
- 来源 详细信息
- Speed Up Quantum Transport Device Simulation on Ferroelectric Tunnel Junction With Machine Learning Methods
- Univ Florida Dept ECE Gainesville FL 32611 USA
- 来源 详细信息
- A comparison of statistical and machine learning methods for debris flow susceptibility mapping
- Jilin Univ Coll Construct Engn Changchun 130012 Peoples R China
- 来源 详细信息
- Machine learning method using position-specific mutation based classification outperforms one hot coding for disease severity prediction in haemophilia 'A'
- Motilal Nehru Natl Inst Technol Allahabad Dept Comp Sci & Engn Allahabad 211004 UP IndiaMotilal Nehru Natl Inst Technol Allahabad Dept Biotechnol Allahabad 211004 UP India
-
来源
PubMed
MEDLINE期刊
详细信息
- Bioinformatics analysis of the genes involved in the extension of prostate cancer to adjacent lymph nodes by supervised and unsupervised machine learning methods: The role of SPAG1 and PLEKHF2
- Mashhad Univ Med Sci Social Determinants Hlth Res Ctr Mashhad Razavi Khorasan IranFerdowsi Univ Mashhad FUM Fac Math Sci Dept Appl Math Mashhad Razavi Khorasan IranMashhad Univ Med Sci Pharmaceut Technol Inst Pharmaceut Res Ctr Mashhad Razavi Khorasan IranMashhad Univ Med Sci Sch Pharm Dept Pharmaceut Biotechnol Mashhad Razavi Khorasan Iran
-
来源
MEDLINE期刊
PubMed
详细信息
- Forecasting Australia's real house price index: A comparison of time series and machine learning methods
- Macquarie Univ Dept Actuarial Studies & Business Analyt Sydney NSW 2109 Australia
- 来源 详细信息
- Classifying 2-year recurrence in patients with dlbcl using clinical variables with imbalanced data and machine learning methods
- Shanxi Med Univ Dept Hlth Stat Shan Xi Prov Key Lab Major Dis Risk Assessment Publ Hlth Dept Taiyuan Peoples R ChinaShanxi Canc Hosp Hematol Dept Taiyuan Peoples R ChinaShanxi Canc Hosp Radiol Dept Taiyuan Peoples R China
- 来源 详细信息