关键词:
数字孪生
配电网
智能化故障诊断
小波包分解
改进卷积自编码器
分布式能源
数字孪生体
诊断准确率
摘要:
[目的]随着分布式能源的广泛接入,配电网的拓扑结构日益复杂,同时监控数据量呈指数级增长,对故障诊断提出了新的挑战。传统故障诊断方法主要依赖监控数据和人工经验,但随着云计算和通信技术的快速发展,人工智能方法在故障诊断领域得到了广泛应用。然而,现有人工智能方法高度依赖训练数据,需要大量基础数据支撑。为此,本文基于数字孪生技术,提出一种配电网智能化故障诊断方法,以提高故障诊断的效率和准确性。[方法]利用数字孪生技术构建配电网数字孪生体,通过虚拟诊断结果指导实际系统运行。同时,采用小波包分解方法提取信号各频带能量构成特征向量,输入改进的卷积自编码器模型中进行学习,以实现故障类型的准确识别。数字孪生系统由物理层、数据层、模型层和服务层组成,实现了虚实映射功能,虚拟孪生体能够实时反映实体运行状态。在仿真实验中,以某区域10 kV配电网的三端口环网结构为基础,构建了包含7520个正常和故障样本数据的完备实验数据集。[结果]实验结果表明,经过100次迭代训练,改进的卷积自编码器模型的故障诊断准确率接近0.98。数字孪生系统的智能化诊断结果显示,本文方法能够准确识别故障类型,与实际故障类型基本一致。在对5种常见故障类型的诊断中,本文方法保持了较高的准确率,平均准确率达0.95,诊断耗时仅为5.39 s。与其他方法相比,本文方法的诊断准确率更高。[结论]通过将数字孪生技术应用于配电网智能化故障诊断,结合虚实一体化的诊断方式,显著提升了故障诊断的精确性和实时性。该方法为配电网智能化故障诊断提供了一种全新的技术手段,有助于提高配电网的可靠性和安全性,对智能电网的发展具有重要的理论意义和实践价值。此外,未来研究将重点探索应对配电网结构变化的技术方法,以进一步提升该故障诊断方法的适用性。