关键词:
browse
diet
herbivore
insectivore
muroid rodents
omnivore
savanna
stable isotopes
摘要:
It is well established that massive consumption of plants by the abundant and diverse assemblage of savanna ungulates in East Africa competitively suppresses the native guild of herbivorous to omnivorous small mammals. An important role of woody plant suppression in the Acacia-dominated savannas for this guild of rodents, when released from ungulate competition, has been demonstrated only recently, but without direct evidence of which species are involved. In an effort to establish which of the common species in this guild are most likely to impact growth of trees and forbs, as opposed to grasses or insects, or both, I present data on atomic and isotopic ratios of fecal carbon and nitrogen from 8 commonly occurring muroid rodents from savanna and bush habitats on the Laikipia Plateau of central Kenya: Acomys percivali, Acomys wilsoni, Aethomys hindei, Arvicanthis niloticus, Mastomys natalensis, Mus spp. (thought to be mostly M. minutoides), Saccostomus mearnsi, and Gerbilliscus robustus. In this region where all grasses are C-4 and all trees and other nongrasses are C-3, different ratios of C-13:C-12(delta C-13) in plant tissues give pure grazers, pure browsers, and mixed-feeding herbivores distinctive carbon isotope signatures. Degree of omnivory is revealed by C:N and, arguably, by delta C-15, but the latter is influenced by dietary protein quality and varies widely by plant species and soil type. Joint consideration of stable-isotope data, total C:N, and microhistological analysis of feces allowed better resolution of dietary niche of each species than any of these data sets could, alone. Grass was either coequal to browse (dicots) or dominated the plant portion of each species' diet, which was somewhat unexpected given rodents' hypothesized role in limiting Acacia recruitment. All species consumed some arthropods. A. niloticus, the only diurnal species, was the most herbivorous, being largely a grazer. S. mearnsi, A. hindei, and M. natalensis were mixed-feeding