关键词:
高光谱图像
端元提取
纯像元指数
数学形态学
摘要:
自动形态学端元提取(automated morphological endmember extraction,AMEE)算法将结构元素内最纯像元与混合度最大的像元之间的光谱角距离定义为形态学离心率指数(morphological eccentricity index,MEI)来定量化地表示像元的纯净度。然而作为参考标准的混合度最大的像元在不同的结构元素内也是不同的,尤其是当结构元素内的纯净像元占大多数时,像元的均值光谱将更接近纯像元,此时像元的MEI越高,纯度反而越低。针对这一问题,本文提出一种像元纯度指数(pure pixel index,PPI)算法与AMEE算法相结合的端元提取算法PPI-AMEE。在结构元素内,利用PPI指数代替AMEE算法中的MEI指数来寻找最纯像元。变换结构元素时,只有最纯净的像元始终能够投影到随机生成的直线的两端,其PPI值会不断累计增大,而其他像元的PPI值则无法持续增大。累计记录每个像元的PPI值,直至满足迭代终止条件,最终形成一幅PPI图像,端元将在PPI值较大的像元中选取。PPI-AMEE算法只在相对较小的结构元素内运行PPI算法,然后再结合数学形态学中的膨胀操作对整幅图像进行处理,其同时兼顾了图像的光谱信息和空间信息。最后,采用模拟数据及美国内华达州Cuprite地区的机载可见光/红外成像光谱仪(airborne visible infrared imaging spectrometer,AVIRIS)高光谱数据对提出的PPI-AMEE算法进行试验验证。试验结果表明,PPI-AMEE算法的端元提取精度总体上优于AMEE算法和PPI算法。