关键词:
分水岭算法
腐蚀
膨胀
梯度
粗糙集
数学形态学
遥感图像
目标识别
摘要:
图像目标识别技术是计算机模式识别与图像处理领域非常活跃的研究课题。分水岭算法和数学形态学算法在图像目标识别中有广泛的应用。本文将这两种方法结合起来,并用于遥感图像目标识别。主要工作总结如下: (1)详细论述了分水岭算法的原理及其在图像处理领域中的相关应用。分水岭算法是一种基于区域特性的分割方法,可以对原始图像和梯度图像进行操作,但是由于分水岭算法很容易产生过分割现象,故先介绍一种预处理方法,然后再利用区域生长型分水岭算法对图像进行分割,并将其用于遥感图像道路提取。 (2)详细论述了数学形态学算法的原理,提出一种数学形态学和分水岭算法相结合的图像识别算法,采用形态学尺度空间先平滑原始图像,然后用梯度阈值对图像进行优化,再采用分水岭变换,并通过遥感图像油罐目标识别验证了此方法的优势。 (3)详细论述了粗糙集理论。着重介绍了数学形态学和粗糙集相结合的算法,先采用粗糙集滤波对图像进行处理,再通过形态学知识提取图像边界,在此基础上,再利用图像的几何特征,去除非目标区域,并通过遥感图像实验结果进一步验证了其可行性。