摘要:
Morphological operations applied in image processing and analysis are becoming increasingly important in today's technology. Morphological operations which are based on set theory, can extract object features by suitable shape (structuring elements). Morphological filters are combinations of morphological operations that transform an image into a quantitative description of its geometrical structure which based on structuring elements. Important applications of morphological operations are shape description, shape recognition, nonlinear filtering, industrial parts inspection, and medical image processing. In this dissertation, basic morphological operations are reviewed, algorithms and theorems are presented for solving problems in distance transformation, skeletonization, recognition, and nonlinear filtering. A skeletonization algorithm using the maxima-tracking method is introduced to generate a connected skeleton. A modified algorithm is proposed to eliminate non-significant short branches. The back propagation morphology is introduced to reach the roots of morphological filters in only two-scan. The definitions and properties of back propagation morphology are discussed. The two-scan distance transformation is proposed to illustrate the advantage of this new definition, G-spectrum (geometric spectrum) which based upon the cardinality of a set of non-overlapping segments in an image using morphological operations is presented to be a useful tool not only for shape description but also for shape recognition. The G-spectrum is proven to be translation-, rotation-, and scaling-invariant. The shape likeliness based on G-spectrum is defined as a measurement in shape recognition. Experimental results are also illustrated. Soft morphological operations which are found to be less sensitive to additive noise and to small variations are the combinations of order statistic and morphological operations. Soft morphological operations commute with thresholding and obey thresho