关键词:
Copolymerization
Styrenes
Monomers
Copolymers
Reactivity
摘要:
The statistical anionic copolymerization of isoprene (I) and styrene (S) is commonly used to synthesize tapered block copolymers, enabling control of the phase behavior by adjusting the order-disorder transition temperature, T-ODT. Alkyllithium initiation in hydrocarbons is known to afford tapered block copolymers of I and S in one step. The effect of tetrahydrofuran (THF) on the copolymerization kinetics and the resulting copolymers was systematically investigated by increasing the [THF]/[Li] ratio from 0 to 2500 (0 to 29%(vol) THF). For this purpose, in situ near-infrared (NIR) spectroscopy was employed as a versatile and fast method to track the highly accelerated consumption of the individual monomers. Changes in the I/S comonomer sequence and in the polyisoprene (PI) regioisomers, caused by variation of the THF concentration, were independently determined via NMR and in situ NIR spectroscopy. Reactivity ratios were determined as a function of the [THF]/[Li] ratio. They revealed a gradual reversal from r(I) >> r(S) over r(I) approximate to r(S) to r(I) << r(S). Corresponding changes in the copolymer composition profile up to a complete inversion are evident in thermal properties and morphologies. Although all copolymers possess the same comonomer composition (50%(mol) = 57%(vol) polystyrene (PS) units), small-angle X-ray scattering and transmission electron microscopy give evidence of a wide variation in bulk morphologies depending on the gradient profile. Overall, the phase diagram is symmetric, and the succession of phases bears certain similarities to the PI-b-PS case. This is discussed in terms of the increasing incompatibility of PS with 3,4-PI and the more symmetric polymer conformational parameter. The degree of segregation, as well as the nanodomain structure, was found to control the mechanical properties, showing a remarkably different viscoelastic response leading to either hard/brittle or ductile/soft materials. The accessibility of tailored gradient