关键词:
COVID-19
胸部X-ray图像
残差神经网络
vision transformer
注意力机制
摘要:
新冠肺炎(COVID-19)自爆发以来严重影响人类生命健康,近年来残差神经网络广泛应用于COVID-19识别任务中,辅助医生快速地诊断COVID-19患者,但是COVID-19图像病变区域形状复杂、大小不一,与周围组织的边界模糊,导致网络难以提取有效特征.本文针对上述问题,提出一种M^(3)Res-Transformer的新冠肺炎胸部X-ray图像识别模型,采用Res-Transformer作为模型的主干网络,结合ResNet和ViT,有效地整合局部病变特征和全局特征;设计混合残差注意力模块(mixed residual attention Module,mraM),同时考虑通道和空间位置的相互依赖性,增强网络的特征表达能力;为了增大感受野,提取多尺度特征,通过叠加具有不同扩张率的扩张卷积构造多尺度扩张残差模块(multiscale dilated residual Module,mdrM),根据不同层次特征尺度的差异,使用3个逐渐收缩尺度的mdrM进行多尺度特征提取;提出上下文交叉感知模块(contextual cross-awareness Module,ccaM),使用深层特征中的语义信息来引导浅层特征,然后将浅层特征中的空间信息嵌入深层特征中,采用交叉加权注意力机制高效聚合深层和浅层特征,获得更丰富的上下文信息.为了验证本文所提模型的有效性,在新冠肺炎胸部X-ray图像数据集上进行实验,与先进的CNN分类模型、融合不同注意力机制的ResNet50模型、基于Transformer的分类模型对比以及消融实验.结果表明,本文所提模型的Acc、Pre、Rec、F1-Score与Spe指标分别为96.33%、96.36%、96.33%、96.35%与96.26%,在COVID-19胸部X-ray图像识别任务中有效提升了识别精度,并通过可视化方法对其进行进一步验证,为COVID-19的辅助诊断提供重要的参考价值.